Structural diversity in a human antibody germline library
نویسندگان
چکیده
To support antibody therapeutic development, the crystal structures of a set of 16 germline variants composed of 4 different kappa light chains paired with 4 different heavy chains have been determined. All four heavy chains of the antigen-binding fragments (Fabs) have the same complementarity-determining region (CDR) H3 that was reported in an earlier Fab structure. The structure analyses include comparisons of the overall structures, canonical structures of the CDRs and the VH:VL packing interactions. The CDR conformations for the most part are tightly clustered, especially for the ones with shorter lengths. The longer CDRs with tandem glycines or serines have more conformational diversity than the others. CDR H3, despite having the same amino acid sequence, exhibits the largest conformational diversity. About half of the structures have CDR H3 conformations similar to that of the parent; the others diverge significantly. One conclusion is that the CDR H3 conformations are influenced by both their amino acid sequence and their structural environment determined by the heavy and light chain pairing. The stem regions of 14 of the variant pairs are in the 'kinked' conformation, and only 2 are in the extended conformation. The packing of the VH and VL domains is consistent with our knowledge of antibody structure, and the tilt angles between these domains cover a range of 11 degrees. Two of 16 structures showed particularly large variations in the tilt angles when compared with the other pairings. The structures and their analyses provide a rich foundation for future antibody modeling and engineering efforts.
منابع مشابه
Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire.
Antibody repertoire diversity, potentially as high as 10(11) unique molecules in a single individual, confounds characterization by conventional sequence analyses. In this study, we present a general method for assessing human antibody sequence diversity displayed on phage using massively parallel pyrosequencing, a novel application of Kabat column-labeled profile Hidden Markov Models, and tran...
متن کاملConstruction and Characterization of Single-Chain Variable Fragment Antibody Library Derived from Germline Rearranged Immunoglobulin Variable Genes
Antibody repertoires for library construction are conventionally harvested from mRNAs of immune cells. To examine whether germline rearranged immunoglobulin (Ig) variable region genes could be used as source of antibody repertoire, an immunized phage-displayed scFv library was prepared using splenocytic genomic DNA as template. In addition, a novel frame-shifting PCR (fsPCR) step was introduced...
متن کاملOrigin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing
Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS coronavirus (SARS CoV), and Hendra and Nipah viruses (henipaviruses). Although broadly neutralizing antibodies (bnAbs) against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compare...
متن کاملSingle Germline V and Vk Genes Encode Predominating Antibody Variable Regions Elicited in Strain a Mice by Immunization
Specific selection of B cells for participation in the immune response appears to operate through noncovalent chemical binding of ligands to V regions of surface receptor antibodies (1, 2) . Thus, our understanding of cellular selection processes that transpire during the acquisition of humoral immunity has been facilitated by structural and functional analyses of antigen-specific mAbs that are...
متن کاملFully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides.
By analyzing the human antibody repertoire in terms of structure, amino acid sequence diversity and germline usage, we found that seven V(H) and seven V(L) (four Vkappa and three Vlambda) germline families cover more than 95 % of the human antibody diversity used. A consensus sequence was derived for each family and optimized for expression in Escherichia coli. In order to make all six compleme...
متن کامل